Factal Patterns & Art - Page 2

Factal Patterns & Art

Hello Guest! Sign up to join the discussion below...
Page 2 of 2 FirstFirst 1 2
Results 11 to 17 of 17
Thank Tree5Thanks

This is a discussion on Factal Patterns & Art within the Science and Technology forums, part of the Topics of Interest category; If I tilt my head enough......

  1. #11

    If I tilt my head enough...

  2. #12

    Factal Patterns & Art

    Something like this.


    Though figuring that out requires sacred geometry?

  3. #13

    Quote Originally Posted by RobynC View Post
    I'm mostly curious about the image from a mathematical standpoint: Nobody got anything
    Can you be a little more specific as to what, specifically, you would like to know?

    I should doubt I'm telling you anything you don't already know, but fractal art (typically?) uses one of (several) various of programs to generate complex mathematical formulas that are then rendered into art. The "repetition" is what best defines fractal art from other media. If you took a print of the Mona Lisa and digitally zoomed in, it's eventually going to pixelate. When using fractal software, this isn't the case; the formulas used allow it to essentially self-replicate.

    That is, when you zoom in several times, you might change the actual view, but it will at least loosely resemble what you previously saw.





    As you can see in the second image, when you zoom into the crevice's of the first image, the same shape is generated.

    Some sample parameters (spoilered, due to eyesoreness):

     

    ::zG5Xzin2t3V3vxNOS+3DQ+fohPg72Dz42ifK17B9wE7kdzh4NLsze3uPFoWtabdRtkGJZ72N
    m/4vifXq74dzM7BcAzw8SqiU8HLWkVRWFJavdoocqo53/6XtYxU9UTV+ZXXMUe/ibqbvbchY
    BNJZ1ZLeqez095sU+i7rqv7+pceWyiminrGGzXpab5Q1m6pRo11F/HsLI8L0N81vS/Ra43VN
    df3m8dP0MV3XMOuosofqurN/sPVtf6hhqzW01XUWP9cOJJZx0QR7YfxQV7U+zVjGEGuraX3m
    KLINP/6XtrovHEVdPUCfb1Q+5klciUyTWJWxFXceyykkMGhKkUxidF31mTWmQWxS4pLKavDG
    zrWyTTlv+Vb7GAkLMibx+aFaKZZbdTVbxOQ5sba5Db3d2ConGeWxeef9+qmzW0/562xaQ0a7
    e9rMkGlqaYsFwptrtaxYXT9mcONNjSE0VJv+VdPMd632U3WVMg62xidLfosx3v3+u3cN0xnp
    aV/n1qkzup4plLXu43dbxu/tx/dlE1qHAUCQOONAaJliEY67eqagknskwNAMWW0Azfj5kLqV
    s1HqUaRSKblCejKjCkDdT50slJOQUaSLE1t5gEoqoaAmNXDDYVxVVbyJUWyKuq5Ftb0C7V1P
    WPCz9e5P/s/yIoe+xhpfXNI7b/8WSe1++X/q7GK2UDjatCacXXHsOUNKAJpQv6hzWU3upaf+
    qFldNdqJsVr4wsttYCVqXbYqTwhFGrc1RJZ2KWJJUeq0WOj6KXQ50sMYaysyELFw4zLEnTYc
    PmE/6Yqw3T0EcpKYsVIFftPfl8rUKjlhKN5bz46DqvZBh9Pw66Xz2RmvG39DfZ9M7p3NUsDG
    9W7pq238DdDvN/NFj1lA/aYt5lGdixAa9ldtjTXX4MoWfrqHeT1zdtb0CuCl6Lvp7pxcmm8y
    uGD5WVXV9p7rL/Cs0UVw7bbrGQlyMNf7fYoejuk2qRbbvdaoaq8+/6fLnoFzP+AITXqXoebt
    aGw20Q53AGsJHVEMXVBG/wkoCDd3/VwIUuGDznjL1DjTppEYlGHDmbg4L3AmANGDVhFs1XPc
    3Nt3R8qzqWXJndDsJwjVLcNeUvq52bumoVL13epj6t6ysTHv1VsFaqxDlDX6LjL1jBAN1Dtj
    yVmFX2JiM7lhm5FZmHXGWkZYo5zFZ+LjLHLycP0cvIzx4KORkFvM0CvIL84KwisADtcuILfZ
    clYRW6hW6FZJG30TE50XG6UvIn6xNFLypYozmLyZvMuZYROzDdmXkNU3Quk85rvxALwQxMMD
    jBHgnjrUgZkBGKGQqDQLGUHmGGOmRgZQAycAaxghFSGGQGGQGGQmDQLGcsQyxAyxAyxAydA6
    xAJkCMgCMgCMgCHgWMEYhUgBUiBUiBUe08iELkSMgSMgpYATPaeJFLkpYATxAmiA86bgJ+c7
    RsUMUt3cFFzTx9UCPl0Tlibemv4VeKSSgkEID9EhhhgE6OSo/IhOkkGID9HZ1shRoPph+kG6
    TaY4RDdIVMDkQfSD9JN0n0wgkF6QmXhasLvCbXeF2uMwwxMCDjHDJuy0ADFjOFjO1hu3iljr
    UgZkYGE6MH6YL2rwWsXhtYvCbxeF2idGGoOgjFfOGdOGduDdvFrAXpEzgQXgRX4Q3bxywVyx
    MCMjEzkODDJuDkYxXiRXiRXe0crE3BSk4f9Va7SLF1Tx8Uc/K1r82lX5tLvSbXapy8Ur8UKj
    yQ7Jh+iE6MSo3cGlXFMKvyYUiAJ0jkQXSC9pzo8qgR5VGjyAI0QfSD9JN0n0wIkG6QlRJCkQ
    fyC9Jz0nw2uqw8v95dQMNwZz/Tw59tby+J487/36MRk4Y/jm0Ro4Xrreoo3MFt9d1NNojcm6
    OzZoc85NDFbO4q6QqapxXeu+Q+uzc8+2NPe0Bd1uTe3HQuTQMMDDabeUlCMjEzkGYoO09ONo
    4KZYGOmRgZkHhBqDYYxnhRnhRn5Q370QgrUiZQozxozdo7dawwVyxMCMjEzkODDBuDEYxXgR
    XgRX4Q3jRKuSUvJxoLxoLPauVi7AJW8lzBE1VpHN3mi7gUs4niRPFje6RztpoO4dfw5vSRR9
    UMPF3T53jVxI9Fn6py8Ur8U2DRoJJYAIhOjE6NSo7s+r0khejkODkQXSC9JN0nU0gL0hUGGE
    aoPph+kG6TaYISDdIdFGEWoP9+rUeIm5uS5cSVIyfl1DmrUsbL/X6ddt+v0Wv9ZtbQVlju8f
    C18xPedx4XcBoAcf65edObH/y5vvdxlVNmcocT3TfsvqVlzPXIKg3KfR6O5GiDnLbGUcePZG
    Bw8BuAcuRxaDjyT+WdpJmodckAyUU0ZawpnCuN+bNy0Ay0Ay+de0gTdgzmJ2sTRmhQmhCRTz
    5AnFEbmDZ+Mk5zSIiDcOCceQs5Bk5Bk5OkFHrQEnK2CEyiAyiAyiZKEhDc5MxWeKySEyyZKE
    ZAcZQslOkTnhc6XVhkiAPNI2pBkTDIn6QO7YFS2pidGC5sAyZBkzmpQyQGka7ibqKnKcge7U
    Vff1mjPdwtqcf70Jb/hxeoNoK0i7NV9VFT/BbqodSVV1m300pzjHzmI91vrrpp7JDK2kDu92
    7L6rmn6u1v9Hfoo5NFtbGtfV91dbytoU+xtbHrmgvN5Cb/3UMV/YlpcHuKj9bcZgWnkv/sJn
    8uT6Y6Yz4Tn1yHGn62pL1NvaYO7fh87XQ+eySy3T5w/l+9w5l+epNdoF5QFqLCYdOdZmKf95
    MVmLbJ6sS2CGmLVV3yylaFzTVV9jeV671Jx9ym6efmInXwPomh+U3RFoYvparbCu0XoVJYUN
    1/XVDqLSQ1bxrK4b6qC83Mwk+a3I/dvYA0du19Y1AgyX9qCYLlUo1CmMRcBZZWGo4EgCxdNB
    ZEOnJWZzMf3wO9yDPnGq5XOw+t4LHgd159QvX3eebX9YlaLuN1jTfec6ZYx9H0p53ePUgdW7
    dqtcXqWzbuXCWi+Kr6AvBPWNmnaulqRAhq2yKX+o3+5twSaYpZ7E8BHyNNa0Y/YAAv0zd1Wc
    hM9FvyDQjC9U59VgbCo1oB50uCq+OQUtwdtedq7xB0tvtZs6/8hm6iz8d0yViLSWy56xYxwU
    Op6ca6FWzjeiSE1yVPNfJhbIZqAfMkc/H01nfhdwW2N6G508tgxlmkl30dnminXAOQvXTLgv
    u9/RTKzLLWrv4ji6muHmypJv8l18Pzdc++3rvHT1ce+l1DlNuDCpLqPfJ9CdYabhDvovhTtj
    RlyQPS3qSqP4ktb3i/89Fm1NbB9Dxp20Lsvsr9xumHUGFqhU1Uhd62cFn0AN1VB4o6Cr/t++
    J1WNXCTJVj1Ft6i6hug4uJVTbQXd6OYdXf4qT3ubXOPR/91Krp+8P0dXxQ90970X/UZpdpY5
    6GLYlTNqysuGXP4+gJHlyBs6+6kfDuFPnCrSdekEO3fy00UFrpizBbZTFJvkHOzHekvrvlbo
    Ud41Fk/x3+v6gvv4dVC2w80ExKRKLZl6uK5KHQpkECLzdblw2USRaKxeblpLpkVkvuprY2tV
    6tVdrN/URT94/67GA96G9tBoXIptYNzJ3+UNsb/1qSvGWAW1sGU3qFE339k9mxfa0vz84T2h
    RibhZouQNaXBNqDWc2hzL/pDXUq65D3ZrrCo8LsL2s5g1IY3DIKnlR1+DBKXhl3FEgyd35+g
    SDlyw/g19oiuM4qsfoGUT/JQPW048nMUV0g+6aYKw3AtFjWLo+qDmjHCfwB3u9PWMkr1xOvd
    afgwsKjkxyyoUJVNHDzuEuYFjli8FBLfMgA2jT5wED0/q62+ASkBFpaa3Fu2hx+ma7B7AvHJ
    B3qFWtgxrhmwXEzq57Z+i069QzD6++gGvvk4aYpH1SmVJXGkzwmSKvtGn0BNKDRLR0pzbcGq
    KOiWA+776GUKb3RoWy+6exPxVNYPMzVdzmdnfVX3miNjGP2Pq9bysXl9E4Szcm1p9Oqd5qjQ
    ubI/H0/3WjufqYj1B22dKXou1iq3VU7irgNsLgNs1Gcl5ZKtlyn07aDrsO40tTHQ+5nOwsKa
    YQZdY30NCLQs2ufu8ed2A1nZ4x7228oP+kp7HqAz2mNGT1vUrd+/WailzE0riia2xX/P3Ivo
    vopR5SR7rd0OMhi1AxsMafOM9CoJgs1ZHMUpmcs2Kb1xW40k70iDsXl11fnd17TqTj52e7hG
    FjS8W7OOjrBj3XoflFKbW1xpq6NBYXtRlUU763JwXzC4A3npZUNlqXsaNVaHLtb09wgpkHdb
    ROtOEHiqIh2SG22Tr3cbT1P1BHI+ilpqq7B0E2i3oocCxO32ub36Qv3SAbJYQqt6pbneA+Ar
    6x4hxgwBNnx9EsmRz6Xz45pB/ZF7mQOBUsO7UFtbpE4k6TIgVHsa/z5/1v7vBYC156BDI7X7
    WYuftDs9rdG9tPstdvXgUcPjbMUQTxj2Em0v37+4ZP1evjkn9U7ZBDg+ndSdnyHlxvnunAvN
    7n2nPC2XB+n18uO2rI3DrVJ7djDFzzIG6e34Sx8MihtPIJaeXl78zf17UjujdSRQ005+1wu/
    Whozm5j7EXkumnG2KA2SenbZz9FULJyhwOzDs7w39TH+JbMxHMVTyPTVm7bouPK8F05fB7rC
    Dz/RV77DbR3zCk0AJPoMBORoCpzH3TOfgPR9UMPFPs0e6JhvYZuP8gvzvUAvmEYnNHYKid0n
    wPiXkfoaozzK1s2FlDd3NoecT611mdZsBzpmX61x9oPVc5bB9yQIlRKurqgGbSQj9DqtZ1QR
    eStsZNndazZhmzOt50ZNneazphmTPt58ZNnfaz5hmzPt5iZNXcazFhmLOt5yZNXeazlhmLPq
    5f6pQjneC2Be446ttVX5JNmeUrpn0cKu90TAgdEAsTAghBgdCA8jAgfCAcMA8TAQcEAiTAQg
    BQcCAyjAQeCASMAzmBK284UI//T7h9f0BIB7h2ux9FbX7cgBUT7tP5v17qbhD1eIsJIHicBO
    txiD6XYb70eszyp9I3orhjk58+adZCwNzhs+To2TR6qn6PVZhJnjmYYcJD0YPPtvug787sve
    N353afdJ37OrYTGieVwpH0ThwjAmZZlB4NR3ZZ0n5I8gDha1lojYQ1W4oMWSb0+GGwb0uave
    8zjQ4j+JBQhbzi8mqS18Rih8zG1tVXTPWXznvB00ehfLIVjNHKtquRXLUiN1LG1FFpuwnrF0
    YudGUgE0LeOqjVtuwVjZ0RduEK2gV7CMg6EY4YMaBjKo/O/i67aLGa+sTTY4mpLYHrLkHrLC
    bHrGtM0olhWcwQSpEvLYxmUbVmeXrMVxWqh/ucT2qM1p0KqLBTprdCguGvCP8dmxOiniKQHA
    pmErGMqWUzcaQDrLHkCrt9Ay4ewZ6qSlFS9JOW9RSmZ3SmZoeXVHYY6tLB265szMbNVb5dyB
    MF4mBA61+QngpA0MAIFIGysTlYiVqs0YvP0buvwtDV/I49yUk6aDSNkMLpKmE/D2VxYU3KKm
    nSdTb6cRMgUCHqxnaUde2fcwv8iOtHH3MwVYOeLM4RG6KO1SctpNM3UAfo3vdv5uJmmCTLnM
    rMbShe8ScW+0AcAI7ScCaJOBtEng1pzXi7M0ne0qDH1ermAtsa10wgd7gNB3V/8eV8/9Dr3m
    ZGbk92w6N7at3SsTHDLEU/H+KB17S2pNixf+B17Cl3rHONo+3VPEDpPGSfMk+YI9xQ6jh0HD
    pPGSfMk+YI9xQ6jh0HDpPGS/vGCpf2z5psb3OgeM/sbr313UtAq9Z9q6Fuvb5Z4H9j9hOKCv
    zxM6qVryS81Q+6PAI2K3jmklRTprk/f+zAy8DVwqfB/OFEf7Px3+T8t/Ef7Px3+TMRhxEFGT
    UYMRhxEFGTUYMRhxEFGTUYMRhxEFGTUYMRhx3+T8t/EDpPGSfMk+YI9xQ6jh0HDpPGSfMk+Y
    I9xQ6jh0HDpPGS/vZe7PswT/hrekMZrc/2/Ic/E/kmmlwYyTe5PSJLZ1vw39zx/9IhG/ZHL+
    zOW8nds4P7Y//7P7Y04P7Y/ce6hXU+TH+u4TPM+0DjP9w4TPMePFx7pIePFx7pIePFx7pIeP
    Fx7pIePFx7pIePFx7pIePFxneY8pHGDpPGSfMk+YI9xQ6jh0HDpPGSfMk+YI9xQ6jh0HDpPG
    S/v5e6hhH9DXi+Daam0/3U1MeK19nnVWq7HhMKJLdFz9CFPnEe7iU6KJTS/G+ztKx3ayv0fU
    yIJxfVyiPNo4TDK+0giPNoYeEj5RMmHxYeEj5RMmHxYeEj5RMmHxYeEj5RMmHxYeEj5RM+0g
    iPNoYI9xQ6jh0HDpPGSfMk+YI9xQ6jh0HDpPGSfMk+YI9xnG0vGfaQkfRPNIKf1qMWiIlxMv
    bEWmcFhnRESxvSfcQnHfcQxHHU8xBFfcQxMJGzkYMTixMJGzkYMTixMJGzkYMTixMJGzkYMT
    ixMJGfcQxHHUMk+YI9xQ6jh0HDpPGSfMk+YI9xQ6jh0HDpPGSfMk+YI9/G9PZhJh32DhKSop
    M3f4wYQsc2K4UouskT+jWInnyWR5/z8ag+fBO5xC6D==
    }
    BigApplePi thanked this post.

  4. #14

    Quote Originally Posted by Clovdyx View Post
    Can you be a little more specific as to what, specifically, you would like to know?

    I should doubt I'm telling you anything you don't already know, but fractal art (typically?) uses one of (several) various of programs to generate complex mathematical formulas that are then rendered into art. The "repetition" is what best defines fractal art from other media. If you took a print of the Mona Lisa and digitally zoomed in, it's eventually going to pixelate. When using fractal software, this isn't the case; the formulas used allow it to essentially self-replicate.

    That is, when you zoom in several times, you might change the actual view, but it will at least loosely resemble what you previously saw.





    As you can see in the second image, when you zoom into the crevice's of the first image, the same shape is generated.

    Some sample parameters (spoilered, due to eyesoreness):

     

    ::zG5Xzin2t3V3vxNOS+3DQ+fohPg72Dz42ifK17B9wE7kdzh4NLsze3uPFoWtabdRtkGJZ72N
    m/4vifXq74dzM7BcAzw8SqiU8HLWkVRWFJavdoocqo53/6XtYxU9UTV+ZXXMUe/ibqbvbchY
    BNJZ1ZLeqez095sU+i7rqv7+pceWyiminrGGzXpab5Q1m6pRo11F/HsLI8L0N81vS/Ra43VN
    df3m8dP0MV3XMOuosofqurN/sPVtf6hhqzW01XUWP9cOJJZx0QR7YfxQV7U+zVjGEGuraX3m
    KLINP/6XtrovHEVdPUCfb1Q+5klciUyTWJWxFXceyykkMGhKkUxidF31mTWmQWxS4pLKavDG
    zrWyTTlv+Vb7GAkLMibx+aFaKZZbdTVbxOQ5sba5Db3d2ConGeWxeef9+qmzW0/562xaQ0a7
    e9rMkGlqaYsFwptrtaxYXT9mcONNjSE0VJv+VdPMd632U3WVMg62xidLfosx3v3+u3cN0xnp
    aV/n1qkzup4plLXu43dbxu/tx/dlE1qHAUCQOONAaJliEY67eqagknskwNAMWW0Azfj5kLqV
    s1HqUaRSKblCejKjCkDdT50slJOQUaSLE1t5gEoqoaAmNXDDYVxVVbyJUWyKuq5Ftb0C7V1P
    WPCz9e5P/s/yIoe+xhpfXNI7b/8WSe1++X/q7GK2UDjatCacXXHsOUNKAJpQv6hzWU3upaf+
    qFldNdqJsVr4wsttYCVqXbYqTwhFGrc1RJZ2KWJJUeq0WOj6KXQ50sMYaysyELFw4zLEnTYc
    PmE/6Yqw3T0EcpKYsVIFftPfl8rUKjlhKN5bz46DqvZBh9Pw66Xz2RmvG39DfZ9M7p3NUsDG
    9W7pq238DdDvN/NFj1lA/aYt5lGdixAa9ldtjTXX4MoWfrqHeT1zdtb0CuCl6Lvp7pxcmm8y
    uGD5WVXV9p7rL/Cs0UVw7bbrGQlyMNf7fYoejuk2qRbbvdaoaq8+/6fLnoFzP+AITXqXoebt
    aGw20Q53AGsJHVEMXVBG/wkoCDd3/VwIUuGDznjL1DjTppEYlGHDmbg4L3AmANGDVhFs1XPc
    3Nt3R8qzqWXJndDsJwjVLcNeUvq52bumoVL13epj6t6ysTHv1VsFaqxDlDX6LjL1jBAN1Dtj
    yVmFX2JiM7lhm5FZmHXGWkZYo5zFZ+LjLHLycP0cvIzx4KORkFvM0CvIL84KwisADtcuILfZ
    clYRW6hW6FZJG30TE50XG6UvIn6xNFLypYozmLyZvMuZYROzDdmXkNU3Quk85rvxALwQxMMD
    jBHgnjrUgZkBGKGQqDQLGUHmGGOmRgZQAycAaxghFSGGQGGQGGQmDQLGcsQyxAyxAyxAydA6
    xAJkCMgCMgCMgCHgWMEYhUgBUiBUiBUe08iELkSMgSMgpYATPaeJFLkpYATxAmiA86bgJ+c7
    RsUMUt3cFFzTx9UCPl0Tlibemv4VeKSSgkEID9EhhhgE6OSo/IhOkkGID9HZ1shRoPph+kG6
    TaY4RDdIVMDkQfSD9JN0n0wgkF6QmXhasLvCbXeF2uMwwxMCDjHDJuy0ADFjOFjO1hu3iljr
    UgZkYGE6MH6YL2rwWsXhtYvCbxeF2idGGoOgjFfOGdOGduDdvFrAXpEzgQXgRX4Q3bxywVyx
    MCMjEzkODDJuDkYxXiRXiRXe0crE3BSk4f9Va7SLF1Tx8Uc/K1r82lX5tLvSbXapy8Ur8UKj
    yQ7Jh+iE6MSo3cGlXFMKvyYUiAJ0jkQXSC9pzo8qgR5VGjyAI0QfSD9JN0n0wIkG6QlRJCkQ
    fyC9Jz0nw2uqw8v95dQMNwZz/Tw59tby+J487/36MRk4Y/jm0Ro4Xrreoo3MFt9d1NNojcm6
    OzZoc85NDFbO4q6QqapxXeu+Q+uzc8+2NPe0Bd1uTe3HQuTQMMDDabeUlCMjEzkGYoO09ONo
    4KZYGOmRgZkHhBqDYYxnhRnhRn5Q370QgrUiZQozxozdo7dawwVyxMCMjEzkODDBuDEYxXgR
    XgRX4Q3jRKuSUvJxoLxoLPauVi7AJW8lzBE1VpHN3mi7gUs4niRPFje6RztpoO4dfw5vSRR9
    UMPF3T53jVxI9Fn6py8Ur8U2DRoJJYAIhOjE6NSo7s+r0khejkODkQXSC9JN0nU0gL0hUGGE
    aoPph+kG6TaYISDdIdFGEWoP9+rUeIm5uS5cSVIyfl1DmrUsbL/X6ddt+v0Wv9ZtbQVlju8f
    C18xPedx4XcBoAcf65edObH/y5vvdxlVNmcocT3TfsvqVlzPXIKg3KfR6O5GiDnLbGUcePZG
    Bw8BuAcuRxaDjyT+WdpJmodckAyUU0ZawpnCuN+bNy0Ay0Ay+de0gTdgzmJ2sTRmhQmhCRTz
    5AnFEbmDZ+Mk5zSIiDcOCceQs5Bk5Bk5OkFHrQEnK2CEyiAyiAyiZKEhDc5MxWeKySEyyZKE
    ZAcZQslOkTnhc6XVhkiAPNI2pBkTDIn6QO7YFS2pidGC5sAyZBkzmpQyQGka7ibqKnKcge7U
    Vff1mjPdwtqcf70Jb/hxeoNoK0i7NV9VFT/BbqodSVV1m300pzjHzmI91vrrpp7JDK2kDu92
    7L6rmn6u1v9Hfoo5NFtbGtfV91dbytoU+xtbHrmgvN5Cb/3UMV/YlpcHuKj9bcZgWnkv/sJn
    8uT6Y6Yz4Tn1yHGn62pL1NvaYO7fh87XQ+eySy3T5w/l+9w5l+epNdoF5QFqLCYdOdZmKf95
    MVmLbJ6sS2CGmLVV3yylaFzTVV9jeV671Jx9ym6efmInXwPomh+U3RFoYvparbCu0XoVJYUN
    1/XVDqLSQ1bxrK4b6qC83Mwk+a3I/dvYA0du19Y1AgyX9qCYLlUo1CmMRcBZZWGo4EgCxdNB
    ZEOnJWZzMf3wO9yDPnGq5XOw+t4LHgd159QvX3eebX9YlaLuN1jTfec6ZYx9H0p53ePUgdW7
    dqtcXqWzbuXCWi+Kr6AvBPWNmnaulqRAhq2yKX+o3+5twSaYpZ7E8BHyNNa0Y/YAAv0zd1Wc
    hM9FvyDQjC9U59VgbCo1oB50uCq+OQUtwdtedq7xB0tvtZs6/8hm6iz8d0yViLSWy56xYxwU
    Op6ca6FWzjeiSE1yVPNfJhbIZqAfMkc/H01nfhdwW2N6G508tgxlmkl30dnminXAOQvXTLgv
    u9/RTKzLLWrv4ji6muHmypJv8l18Pzdc++3rvHT1ce+l1DlNuDCpLqPfJ9CdYabhDvovhTtj
    RlyQPS3qSqP4ktb3i/89Fm1NbB9Dxp20Lsvsr9xumHUGFqhU1Uhd62cFn0AN1VB4o6Cr/t++
    J1WNXCTJVj1Ft6i6hug4uJVTbQXd6OYdXf4qT3ubXOPR/91Krp+8P0dXxQ90970X/UZpdpY5
    6GLYlTNqysuGXP4+gJHlyBs6+6kfDuFPnCrSdekEO3fy00UFrpizBbZTFJvkHOzHekvrvlbo
    Ud41Fk/x3+v6gvv4dVC2w80ExKRKLZl6uK5KHQpkECLzdblw2USRaKxeblpLpkVkvuprY2tV
    6tVdrN/URT94/67GA96G9tBoXIptYNzJ3+UNsb/1qSvGWAW1sGU3qFE339k9mxfa0vz84T2h
    RibhZouQNaXBNqDWc2hzL/pDXUq65D3ZrrCo8LsL2s5g1IY3DIKnlR1+DBKXhl3FEgyd35+g
    SDlyw/g19oiuM4qsfoGUT/JQPW048nMUV0g+6aYKw3AtFjWLo+qDmjHCfwB3u9PWMkr1xOvd
    afgwsKjkxyyoUJVNHDzuEuYFjli8FBLfMgA2jT5wED0/q62+ASkBFpaa3Fu2hx+ma7B7AvHJ
    B3qFWtgxrhmwXEzq57Z+i069QzD6++gGvvk4aYpH1SmVJXGkzwmSKvtGn0BNKDRLR0pzbcGq
    KOiWA+776GUKb3RoWy+6exPxVNYPMzVdzmdnfVX3miNjGP2Pq9bysXl9E4Szcm1p9Oqd5qjQ
    ubI/H0/3WjufqYj1B22dKXou1iq3VU7irgNsLgNs1Gcl5ZKtlyn07aDrsO40tTHQ+5nOwsKa
    YQZdY30NCLQs2ufu8ed2A1nZ4x7228oP+kp7HqAz2mNGT1vUrd+/WailzE0riia2xX/P3Ivo
    vopR5SR7rd0OMhi1AxsMafOM9CoJgs1ZHMUpmcs2Kb1xW40k70iDsXl11fnd17TqTj52e7hG
    FjS8W7OOjrBj3XoflFKbW1xpq6NBYXtRlUU763JwXzC4A3npZUNlqXsaNVaHLtb09wgpkHdb
    ROtOEHiqIh2SG22Tr3cbT1P1BHI+ilpqq7B0E2i3oocCxO32ub36Qv3SAbJYQqt6pbneA+Ar
    6x4hxgwBNnx9EsmRz6Xz45pB/ZF7mQOBUsO7UFtbpE4k6TIgVHsa/z5/1v7vBYC156BDI7X7
    WYuftDs9rdG9tPstdvXgUcPjbMUQTxj2Em0v37+4ZP1evjkn9U7ZBDg+ndSdnyHlxvnunAvN
    7n2nPC2XB+n18uO2rI3DrVJ7djDFzzIG6e34Sx8MihtPIJaeXl78zf17UjujdSRQ005+1wu/
    Whozm5j7EXkumnG2KA2SenbZz9FULJyhwOzDs7w39TH+JbMxHMVTyPTVm7bouPK8F05fB7rC
    Dz/RV77DbR3zCk0AJPoMBORoCpzH3TOfgPR9UMPFPs0e6JhvYZuP8gvzvUAvmEYnNHYKid0n
    wPiXkfoaozzK1s2FlDd3NoecT611mdZsBzpmX61x9oPVc5bB9yQIlRKurqgGbSQj9DqtZ1QR
    eStsZNndazZhmzOt50ZNneazphmTPt58ZNnfaz5hmzPt5iZNXcazFhmLOt5yZNXeazlhmLPq
    5f6pQjneC2Be446ttVX5JNmeUrpn0cKu90TAgdEAsTAghBgdCA8jAgfCAcMA8TAQcEAiTAQg
    BQcCAyjAQeCASMAzmBK284UI//T7h9f0BIB7h2ux9FbX7cgBUT7tP5v17qbhD1eIsJIHicBO
    txiD6XYb70eszyp9I3orhjk58+adZCwNzhs+To2TR6qn6PVZhJnjmYYcJD0YPPtvug787sve
    N353afdJ37OrYTGieVwpH0ThwjAmZZlB4NR3ZZ0n5I8gDha1lojYQ1W4oMWSb0+GGwb0uave
    8zjQ4j+JBQhbzi8mqS18Rih8zG1tVXTPWXznvB00ehfLIVjNHKtquRXLUiN1LG1FFpuwnrF0
    YudGUgE0LeOqjVtuwVjZ0RduEK2gV7CMg6EY4YMaBjKo/O/i67aLGa+sTTY4mpLYHrLkHrLC
    bHrGtM0olhWcwQSpEvLYxmUbVmeXrMVxWqh/ucT2qM1p0KqLBTprdCguGvCP8dmxOiniKQHA
    pmErGMqWUzcaQDrLHkCrt9Ay4ewZ6qSlFS9JOW9RSmZ3SmZoeXVHYY6tLB265szMbNVb5dyB
    MF4mBA61+QngpA0MAIFIGysTlYiVqs0YvP0buvwtDV/I49yUk6aDSNkMLpKmE/D2VxYU3KKm
    nSdTb6cRMgUCHqxnaUde2fcwv8iOtHH3MwVYOeLM4RG6KO1SctpNM3UAfo3vdv5uJmmCTLnM
    rMbShe8ScW+0AcAI7ScCaJOBtEng1pzXi7M0ne0qDH1ermAtsa10wgd7gNB3V/8eV8/9Dr3m
    ZGbk92w6N7at3SsTHDLEU/H+KB17S2pNixf+B17Cl3rHONo+3VPEDpPGSfMk+YI9xQ6jh0HD
    pPGSfMk+YI9xQ6jh0HDpPGS/vGCpf2z5psb3OgeM/sbr313UtAq9Z9q6Fuvb5Z4H9j9hOKCv
    zxM6qVryS81Q+6PAI2K3jmklRTprk/f+zAy8DVwqfB/OFEf7Px3+T8t/Ef7Px3+TMRhxEFGT
    UYMRhxEFGTUYMRhxEFGTUYMRhxEFGTUYMRhx3+T8t/EDpPGSfMk+YI9xQ6jh0HDpPGSfMk+Y
    I9xQ6jh0HDpPGS/vZe7PswT/hrekMZrc/2/Ic/E/kmmlwYyTe5PSJLZ1vw39zx/9IhG/ZHL+
    zOW8nds4P7Y//7P7Y04P7Y/ce6hXU+TH+u4TPM+0DjP9w4TPMePFx7pIePFx7pIePFx7pIeP
    Fx7pIePFx7pIePFx7pIePFxneY8pHGDpPGSfMk+YI9xQ6jh0HDpPGSfMk+YI9xQ6jh0HDpPG
    S/v5e6hhH9DXi+Daam0/3U1MeK19nnVWq7HhMKJLdFz9CFPnEe7iU6KJTS/G+ztKx3ayv0fU
    yIJxfVyiPNo4TDK+0giPNoYeEj5RMmHxYeEj5RMmHxYeEj5RMmHxYeEj5RMmHxYeEj5RM+0g
    iPNoYI9xQ6jh0HDpPGSfMk+YI9xQ6jh0HDpPGSfMk+YI9xnG0vGfaQkfRPNIKf1qMWiIlxMv
    bEWmcFhnRESxvSfcQnHfcQxHHU8xBFfcQxMJGzkYMTixMJGzkYMTixMJGzkYMTixMJGzkYMT
    ixMJGfcQxHHUMk+YI9xQ6jh0HDpPGSfMk+YI9xQ6jh0HDpPGSfMk+YI9/G9PZhJh32DhKSop
    M3f4wYQsc2K4UouskT+jWInnyWR5/z8ag+fBO5xC6D==
    }
    That looks roughly like this

  5. #15

    Quote Originally Posted by RobynC View Post
    Jesus, who do I gotta blow to get an answer?
    @RobynC

    You been drinking again? I never studied fractals, but they are pretty. Maybe you could figure them out here.

  6. #16

    I found this, but it has a whole lot of technical talk. Also, it's not exactly like the picture.

    You can use this to visualize it.

    Wait, this may be it. There is a book that describes how to do this, but you have to pay for it. Gonna see if I can find it anywhere on the internet.

    EDIT: This is it.
    Last edited by SimplyRivers; 12-13-2016 at 07:03 AM.

  7. #17

    @SimplyRivers

    I found this, but it has a whole lot of technical talk. Also, it's not exactly like the picture.
    So basically the code turns a grid into a ball, and/or dissects each grid into a pair of triangles?

    You can use this to visualize it.
    That I can do...

    Wait, this may be it. There is a book that describes how to do this, but you have to pay for it. Gonna see if I can find it anywhere on the internet.

    EDIT: This is it.
    I'm not sure what you call this kind of stuff... it seems to involve 3D Art, underlying mathematics, and programming

    @Gingerbread Diamonds


    It kind of looks like 3-D flowers of life.
    Flowers of life?


    Something like this.


    Though figuring that out requires sacred geometry?
    Sacred geometry?


    @Clovdyx


    Can you be a little more specific as to what, specifically, you would like to know?
    Mostly how the image went from, if you look at the ball in the middle from


    • Triangle wedges which bend into a curved shape
    • These shapes then form a sphere
    • These spheres then move to the outside in a manner that ultimately form a hollow sphere around the center portion of the image

    I'm not sure if that's a fractal or what it is...





     
Page 2 of 2 FirstFirst 1 2

Similar Threads

  1. [INTJ] Art & INTJs. Does it match?
    By Payapeste in forum INTJ Forum - The Scientists
    Replies: 45
    Last Post: 03-01-2017, 07:52 PM
  2. Spirituality & Art
    By babblingbrook in forum Spirituality and Religion
    Replies: 21
    Last Post: 03-24-2016, 03:28 AM
  3. What Are Your Unhealthy Patterns & When Would They Occur?
    By MaggieMay in forum Myers Briggs Forum
    Replies: 5
    Last Post: 11-07-2015, 10:46 AM
  4. [INFJ] Recurring Dreams & INFJ Dream Patterns
    By Rethink in forum INFJ Forum - The Protectors
    Replies: 15
    Last Post: 08-27-2013, 07:35 PM

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
All times are GMT -7. The time now is 12:23 AM.
Information provided on the site is meant to complement and not replace any advice or information from a health professional.
© 2014 PersonalityCafe
 

SEO by vBSEO 3.6.0