interesting science stories

interesting science stories

Hello Guest! Sign up to join the discussion below...
Page 1 of 7 1 2 3 ... LastLast
Results 1 to 10 of 66
Thank Tree13Thanks

This is a discussion on interesting science stories within the Science and Technology forums, part of the Topics of Interest category; NASA's Plan To Use A Giant Magnet To Make Mars Habitable...

  1. #1

    interesting science stories

    NASA's Plan To Use A Giant Magnet To Make Mars Habitable

  2. #2

    Scientists turn mammalian cells into complex biocomputers

    By Robert F. ServiceMar. 27, 2017 , 11:00 AM

    Adding genetic circuits to cells lets researchers control their actions, setting the stage for new ways to treat cancer and other diseases.

    Computer hardware is getting a softer side. A research team has come up with a way of genetically engineering the DNA of mammalian cells to carry out complex computations, in effect turning the cells into biocomputers. The group hasn’t put those modified cells to work in useful ways yet, but down the road researchers hope the new programming techniques will help improve everything from cancer therapy to on-demand tissues that can replace worn-out body parts.

    Engineering cells to function like minicomputers isn’t new. As part of the growing field of synthetic biology, research teams around the globe have been manipulating DNA for years to make cells perform simple actions like lighting up when oxygen levels drop. To date, most such experiments have been done in Escherichia coli and other bacteria, because their genes are relatively easy to manipulate. Researchers have also managed to link multiple genetic circuits together within a single cell to carry out more complex calculations in bacteria.

    Scientists have tried to extend this to mammalian cells to create genetic circuitry that can help detect and treat human diseases. But efforts to construct large-scale genetic circuits in mammalian cells have largely failed: For complex circuits to work, the individual components—the turning on and off of different genes—must happen consistently. The most common way to turn a gene on or off is by using proteins called transcription factors that bind to and regulate the expression of a specific gene. The problem is these transcription factors “all behave slightly differently,” says Wilson Wong, a synthetic biologist at Boston University.

    To upgrade their DNA “switches,” Wong and his colleagues steered clear of transcription factors and instead switched human kidney cell genes on and off using scissorlike enzymes that selectively cut out snippets of DNA. These enzymes, known as DNA recombinases, recognize two target stretches of DNA, each between 30 to 50 or more base pairs long. When a recombinase finds its target DNA stretches, it cuts out any DNA in between, and stitches the severed ends of the double helix back together.

    To design genetic circuits, Wong and his colleagues use the conventional cellular machinery that reads out a cell’s DNA, transcribes its genes into RNA, and then translates the RNA into proteins. This normal gene-to-protein operation is initiated by another DNA snippet, a promoter, that sits just upstream of a gene. When a promoter is activated, a molecule called RNA polymerase gets to work, marching down the DNA strand and producing an RNA until it reaches another DNA snippet—a termination sequence—that tells it to stop.

    To make one of their simplest circuits, Wong’s team inserted four extra snippets of DNA after a promoter. The main one produced green fluorescent protein (GFP), which lights up cells when it is produced. But in front of it was a termination sequence, flanked by two snippets that signaled the DNA recombinase. Wong and his team then inserted another gene in the same cell that made a modified recombinase, activated only when bound to a specific drug; without it, the recombinase wouldn’t cut the DNA.

    When the promoter upstream of the GFP gene was activated, the RNA polymerase ran headfirst into the termination sequence, stopped reading the DNA, and didn’t produce the fluorescent protein. But when the drug was added, the recombinase switched on and spliced out the termination sequence that was preventing the RNA polymerase from initiating production of GFP. Voila, the cell lit up.

    As if that Rube Goldbergian feat weren’t enough, Wong and his colleagues also showed that by adding additional recombinases together with different target strands, they could build a wide variety of circuits, each designed to carry out a different logical operation. The approach worked so well that the team built 113 different circuits, with a 96.5% success rate, they report today in Nature Biotechnology. As a further demonstration, they engineered human cells to produce a biological version of something called a Boolean logic lookup table. The circuit in this case has six different inputs, which can combine in different ways to execute one of 16 different logical operations.

    “It’s exciting in that it represents another scale at which we can design mammalian genetic circuits,” says Timothy Lu, a synthetic biologist at the Massachusetts Institute of Technology in Cambridge. Although the current circuits are a proof of concept, both Lu and Wong say synthetic biologists want to use them to create new medical therapies. For example, scientists could engineer T cells, sentinels of the immune system, with genetic circuits that initiate a response to wipe out tumors when they detect the presence of two or three “biomarkers” produced by cancer cells, Lu says. Another example being explored by Wong and others is to engineer stem cells so they develop into specific cell types when prompted by different signals. This could let synthetic biologists generate tissues on demand, such as insulin-producing β cells, or cartilage-producing chondrocytes.

  3. #3

    Your Cat Thinks You're Cool

  4. Remove Advertisements

  5. #4

    Red Planet versus Dead Planet: Scientists Debate Next Destination for Astronauts in S

    Leonard David

    THE WOODLANDS, Texas—Should the U.S. send humans back to the moon in a 21st-century reboot of the cold war–era Apollo program…or should the nation go full-throttle and for the gusto, sending crews to all the way to Mars, where none have gone before? U.S. scientists and policy makers have grappled ad nauseamwith America’s next great otherworldly destination for decades, without making much meaningful progress. Now that it is approaching a half-century since an American—or anyone at all, for that matter—last left low Earth orbit, the debate seems lost in space.

    Soon that shall change, many advocates of human spaceflight believe, through a hybrid of new initiatives by Pres. Donald Trump’s administration as well as commercial efforts led by private industry. The Trump White House’s vision for U.S. astronauts remains at present a foggy TBD, but there are plans afoot to relaunch a National Space Council. Helmed by Vice Pres. Mike Pence, the council would set a new space agenda not only for NASA but also for U.S. rocket companies, big and small, such as SpaceX, Blue Origin, Boeing, Lockheed Martin and Orbital ATK.

    In the meantime, speculation about the U.S.'s future in space has reached its highest point in recent memory, as made clear here last week by the proceedings of the 48th Lunar and Planetary Science Conference (LPSC). At the meeting, scientists unleashed the latest findings regarding Earth’s moon, Mars, asteroids, comets and myriad other cosmic objects of interest, often with a hopeful eye toward rekindling human voyages to other worlds. Although robotic probes are the persistent currency of discovery in today’s planetary science, many researchers increasingly see astronauts as crucial agents of exploration in the not-too-distant future.

    Destination Moon

    “Planetary science will completely change once we get crew beyond low Earth orbit,” says David Kring, a senior staff scientist at the Lunar and Planetary Institute. “The best way to explore the moon is by the well-trained astronaut, hands down. Apollo demonstrated that wonderfully.”

    Kring says he is eager to see the first NASA exploration missions using the agency’s Space Launch System (SLS) rocket, which is currently being developed along with a crewed Orion spacecraft. At the Trump administration’s insistence, NASA is assessing the prospect of flying a two-person crew around the moon in mid-2019—years ahead of schedule for the delay-plagued SLS and Orion programs. “I’m even more anxious to see crews deploy robotic assets to the lunar surface and eventually land there themselves,” Kring adds. “We need to get back on the surface. We need to collect samples. And we need to bring them back to Earth.”

    A Scientific Bonanza

    The moon is a bonanza for scientists, Kring says, because it offers crucial insights for understanding the origins and evolution of Earth and other planets: how they formed from the accretion and differentiation of smaller bodies; how they were bombarded by impacts early in their histories; and even how some of them migrated in their orbits around the sun. “The best place to answer those questions is on the moon,” he explains, given that its airless surface contains the scarcely altered imprints of 4.5 billion years of solar system history.
    You can’t be a Martian without being a lunatic, suggests Clive Neal, a lunar scientist at the University of Notre Dame. Credit: Barbara David Here on Earth destructive geologic processes cloud our view of those long-gone formative eons, Kring says. Even on modern-day Mars, a planet far more inert than Earth, many of the answers we might seek to our solar system’s deepest mysteries have been erased by the slow workings of geology.

    Kring also sees the moon as a gateway to Mars. “We have to have legitimate, meaningful milestones on our way to Mars,” he explains. “We all want to get humans on Mars. The question is how do you get there? I don’t think we’re going to develop the right workforce with the capabilities to magically get to Mars by 2035 or 2045. We need to develop the techniques and the workforce for that leap, and that can happen in [lunar orbit] and on the moon”

    Every Martian Is a Lunatic

    According to Clive Neal, a lunar scientist at the University of Notre Dame, any moon-versus-Mars argument is a nonstarter. “It’s not either-or,” he says, because the moon can enable Mars by tapping lunar resources to support a sustainable human expansion deeper into the solar system.

    “You can’t be a Martian without being a lunatic,” Neal says. “If you want to do ‘flags and footprints,’ go to Mars now. But you’ll never go back, because that’s Apollo—a fantastic program, but it was not sustainable.”

    To Neal, Earth's satellite is first and foremost a world rich in resources that can and should be used. For example, he pointed to sun-shy craters at the lunar poles, where near-constant darkness has trapped and preserved water ice ripe for conversion into oxygen, water and rocket propellant. “We have to do some basic geologic prospecting,” he says. "And if the moon’s resources are shown to be substantial, “you then bring the Moon into our economic sphere of influence. I view the moon as enabling, and that comes through its resources.”

    Apollo Dreams

    Speaking at a breakout session prior to the formal start of the LPSC gathering last week, Apollo 17 moon walker and geologist Jack Schmitt reflected on the value of human exploration of the moon. It had been nearly 45 years since Schmitt bunny-hopped his way across the low-gravity lunar landscape in December 1972 during the final Apollo mission; half of Apollo’s 12 moon walkers have now died. With the passing of his Apollo 17 crewmate, Gene Cernan, earlier this year, Schmitt spoke as the last living person from that mission to have set foot on the moon.

    Schmitt’s speech raised issues familiar to many in the audience. For decades, he has championed the potential economics of lunar mining for helium 3, an isotope that could be crucial for certain forms of nuclear fusion. The lunar surface has soaked up vast quantities of helium 3 from billions of years of bombardment by the solar wind, Schmitt explained, and drawing on that resource is how a lunar settlement could support itself. Provided, that is, that scientists back on Earth can first figure out how to make nuclear fusion an economically viable power source—a goal that has eluded them for decades.
    Schmitt’s faith in a lunar future for humankind is unwavering. “A settlement on the Moon based on helium 3 export to Earth for fusion power makes a lot of sense to me. It starts not only to make us a two-planet species but enables, I think, Mars exploration in many different ways,” he noted.
    Apollo 17 moon walker and geologist Jack Schmitt champions the possible economics of mining helium 3 on the moon. Credit: Barbara David For example, he said, helium 3 mining would produce by-products including water, hydrogen, carbon and nitrogen. These useful substances exist in only the most minuscule traces in lunar soil—but such an enormous amount of surface material would have to be processed to harvest helium 3 that they would accumulate in significant amounts. Water sourced from the low-gravity moon, Schmitt explained, could be utilized as a protective, radiation-thwarting cocoon, built into the superstructures of Mars-bound crewed spacecraft. “A few inches of water around a spacecraft weights an awful lot and it is expensive bringing it from Earth. You can produce water anywhere on the moon,” he said.

    Red Planet Runs

    Others have little time for the moon and the decades that would be required to develop infrastructure there. Their eyes are instead on the bigger prize: Mars. Elon Musk, SpaceX’s CEO and chief rocketeer, is the foremost example of the “Mars first” contingent. And according to SpaceX engineer Paul Wooster, Red Planet planning by Musk’s private company is steadily progressing. “The vision for SpaceX, long-term, is making it possible for large numbers of people to go to Mars,” he says.

    SpaceX plans to build a mega-rocket and a giant interplanetary crew transporter to populate Martian outposts and eventually a full-size city, Wooster reports. But before the company can achieve those wild goals it must first firm up its capability to send something—anything at all—to Mars. That would come via interplanetary flights of the firm’s Red Dragon spacecraft—a derivative of the SpaceX Dragon capsule that has already hauled cargo to the International Space Station and in due course will take astronauts there. Wooster says SpaceX is intent on rapidly building up surface infrastructure on Mars, hopefully beginning by the mid-2020s. “We obviously have a lot of work ahead of us,” he says.

    A crucial component of the SpaceX plan for Mars has been demonstrated several times here on Earth. The company has repeatedly landed its Falcon 9 rocket’s first stage at sea on a drone ship, and on land at Florida’s Cape Canaveral Air Force Station. Because the first stage can then be repeatedly reused rather than flown once and discarded, an economy of scale could develop that greatly reduces the cost of access to space, and thus the price tag of a bank-busting plan to colonize Mars. For SpaceX’s ambitious plans to work, the company will have to develop and demonstrate reusability on its next generation of rockets poised to debut after Falcon 9.

    Wooster says an unpiloted SpaceX Red Dragon flight to Mars, able to deliver roughly one ton of useful payload, is being considered for 2020. Other Red Dragons could follow every two years or so, when Mars and Earth are in favorable alignments that minimize the fuel needed for an interplanetary crossing.
    SpaceX Red Dragon nears autopilot touchdown on Mars. The private firm has the Red Planet in its sights to establish an outpost, and eventually a city, on that distant world.

    Credit: SpaceX SpaceX Marks the Spot

    “First and foremost is to learn how to land large payloads on Mars,” Wooster says. In preparation for planting an outpost on that far-off world, experiments onboard Red Dragon are set to test on-the-spot propellant production. That can be done, he says, by processing water from Mars’ surface and with gases extracted from the carbon dioxide–rich atmosphere. In fact, NASA is also set to try out something similar—a Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) on the space agency’s Mars 2020 rover.

    SpaceX has been quietly working with NASA and non-NASA landing site specialists to plot locales for plopping down its spacecraft. Site selection is driven by the quantity of water the firm is looking for—thousands of tons, Wooster explains. One such spot “is looking quite promising,” he says: Arcadia Planitia, a smooth plain on Mars that appears to have large quantities of ice near the surface.
    Of course, where there is ice there may well be subsurface pockets of liquid water—and potentially life, raising the possibility that SpaceX could violate “planetary protection” protocols by landing in such regions. Wooster says SpaceX is working with NASA’s Office of Planetary Protection to properly address such concerns. For now, he reiterates that the company is most definitely open for business and eager to entice researchers to make use of Red Dragon for toting their experiments. “SpaceX is a transportation company,” Wooster explains. “We’re very happy to deliver payloads to Mars for various people,” he adds, an offer that has also piqued NASA’s interest in contracting with the company to launch a potential science experiment in 2020. “We want to turn this into a steady cadence where we are sending [Red] Dragons to Mars based on every opportunity as we go forward, and eventually shifting over to our large Mars vehicle to deliver very large payloads,” he concludes.

    Be it back to the moon or first footfalls on Mars, the trajectory taken by the U.S. appears to have the research community in ready-and-waiting mode. Whether it comes via government-backed public-private partnerships, international collaboration or go-it-alone endeavors by the only nation to have landed astronauts on the moon, there is plenty of extraterrestrial science that can—and will—be done, potentially even by humans.
    Catwalk thanked this post.

  6. #5
  7. #6

    Surprising study finds that cats actually prefer people over food. - Seriously, Scien

    If you’ve ever had a cat, you probably believe that, given the choice, your cat would always choose food over you. But assumptions are not always correct, which is why we test them with science! Here, scientists tested whether pet and shelter cats prefer social interaction, food, scent, or toys. They found that “although there was clear individual variability in cat preference, social interaction with humans was the most-preferred stimulus category for the majority of cats, followed by food.” Now, doesn’t that make you feel special?

    Social interaction, food, scent or toys? A formal assessment of domestic pet and shelter cat (Felis silvestris catus) preferences

    “Domestic cats (Felis silvestris catus) engage in a variety of relationships with humans and can be conditioned to engage in numerous behaviors using Pavlovian and operant methods. Increasingly cat cognition research is providing evidence of their complex socio-cognitive and problem solving abilities. Nonetheless, it is still common belief that cats are not especially sociable or trainable. This disconnect may be due, in part, to a lack of knowledge of what stimuli cats prefer, and thus may be most motivated to work for. The current study investigated domestic cat preferences at the individual and population level using a free operant preference assessment. Adult cats from two populations (pet and shelter) were presented with three stimuli within each of the following four categories: human social interaction, food, toy, and scent. Proportion of time interacting with each stimulus was recorded. The single most-preferred stimulus from each of the four categories were simultaneously presented in a final session to determine each cat’s most-preferred stimulus overall. Although there was clear individual variability in cat preference, social interaction with humans was the most-preferred stimulus category for the majority of cats, followed by food. This was true for cats in both the pet and shelter population. Future research can examine the use of preferred stimuli as enrichment in applied settings and assess individual cats’ motivation to work for their most-preferred stimulus as a measure of reinforcer efficacy.”

  8. #7

    Climate Change Makes Farmers Chase New Planting Windows

    A farmer climbs into a combine. (Credit: USDA/Lance Cheung)

    Most people think of frost as a farmer’s worst nightmare. But for corn growers in Illinois, there’s little worse than a warm, soggy spring. Rainfall can soak soft prairie soils and rot the kernels before they can grow. If the rains keep farmers from their fields long enough, crop yields start to plummet. Rain can also wash away herbicides, pushing growers to apply more.

    For years, this fear has driven farmers to plant earlier and earlier. Late April used to be the prime planting window. This year, weather permitting, many will begin planting this week.

    Emerson Nafziger, University of Illinois extension specialist, says each year he hears stories of people planting earlier than the last. Some of those are just tales for the coffee shop, he says. This year he heard rumors of people planting in February. But he’s seen the trend himself over recent decades. Though he points out that seed treatments and high-tech farm equipment are as responsible for jumping the gun as the weather.

    “Forty years ago a farmer with good conditions the first week of April almost certainly would not have planted,” he says. “It was seen as too risky. Today that’s not the case.”

    These trends, along with a string of wet springs late in the last decade, prompted U.S. Department of Agriculture scientist Adam Smith to investigate how planting windows might shift even more with climate change in the years to come.

    He and his colleagues used the latest climate models to see what might happen in Illinois down the road. They found spring continues to get warmer and wetter. But summers also get hotter and drier. Both of those are bad for crop yield. If the plant overheats while it’s maturing, it makes less corn. It can also freeze in the ground.

    Their models show two planting seasons emerge in the future. One happens in March, as warmer winters let farmers plant earlier and earlier. The other comes between May and June, after the soggiest weather but before the heat.

    “The season fragments and we start to see an early-early season, so that March starts looking like a good target for planting in the future,” he says. “In the past, March has been the bleeding edge. Nobody in their right mind would have planted then. But we’ve already seen the trend for early planting.”

    Timeliness has always been vital in farming, but soon many Midwest growers will have to decide between these two contrasting strategies. Do they plant early and risk the cold, or do they plant late and risk the heat?

    “There’s a clock ticking as soon as it begins to warm up in the spring and the field is plantable,” Smith says.

  9. #8
  10. #9

    Simulation Suggests 68 Percent of the Universe May Not Actually Exist

    Posted by Slashdot

    boley1 quotes a report from New Atlas:
    According to the Lambda Cold Dark Matter (Lambda-CDM) model, which is the current accepted standard for how the universe began and evolved, the ordinary matter we encounter every day only makes up around five percent of the universe's density, with dark matter comprising 27 percent, and the remaining 68 percent made up of dark energy, a so-far theoretical force driving the expansion of the universe. A new study has questioned whether dark energy exists at all, citing computer simulations that found that by accounting for the changing structure of the cosmos, the gap in the theory, which dark energy was proposed to fill, vanishes. According to the new study from Eotvos Lorand University in Hungary and the University of Hawaii, the discrepancy that dark energy was "invented" to fill might have arisen from the parts of the theory that were glossed over for the sake of simplicity. The researchers set up a computer simulation of how the universe formed, based on its large-scale structure. That structure apparently takes the form of "foam," where galaxies are found on the thin walls of each bubble, but large pockets in the middle are mostly devoid of both normal and dark matter. The team simulated how gravity would affect matter in this structure and found that, rather than the universe expanding in a smooth, uniform manner, different parts of it would expand at different rates. Importantly, though, the overall average rate of expansion is still consistent with observations, and points to accelerated expansion. The end result is what the team calls the Avera model. If the research stands up to scrutiny, it could change the direction of the study of physics away from chasing the ghost of dark energy. "The theory of general relativity is fundamental in understanding the way the universe evolves," says Dr Laszlo Dobos, co-author of the new paper. "We do not question its validity; we question the validity of the approximate solutions. Our findings rely on a mathematical conjecture which permits the differential expansion of space, consistent with general relativity, and they show how the formation of complex structures of matter affects the expansion. These issues were previously swept under the rug but taking them into account can explain the acceleration without the need for dark energy." The study has been
    published in the Monthly Notices of the Royal Astronomical Society. You can view an animation that compares the different models


  11. #10

    Octopuses Edit Their Genetic Code Like No Other Animal - D-brief

    (Credit: Wikimedia Commons)

    New research into the cephalopod genome is undermining our assumptions about evolution, and the role that DNA mutations play in updating a species’ physiology.
    Researchers from the Marine Biological Laboratory in Woods Hole and Tel Aviv University have been studying how cephalopods — squids, octopuses, cuttlefish and nautiluses — edit their genome, and found that instead of relying on DNA mutations to adapt, they have the ability to make changes to their RNA, the genetic “messengers” that carry out the instructions written by DNA. This means that their fundamental genetic code remains largely the same from generation to generation, while changes occur at the level of the individual and don’t carry over to their offspring.

    Don’t Alter the Messenger

    In humans, less than one percent of our RNA transcripts show signs of editing, and the same holds true across most other species. In our cells, DNA instructions get copied faithfully to RNA, who then carry out their missions as instructed. Changes, if they do occur, happen at the level of the species and take generations. Cephalopods, however, have figured out how to tinker with the process of transcribing DNA to RNA, editing their genetic messages to create changes on an individual level.

    Looking at a previously published octopus genome to search for signs of editing, researchers report that the level of RNA editing is about an order of magnitude higher than in primates. This means that octopuses alter the messages written by their DNA, transforming the original code into custom commands. The result is the production of novel proteins and enzymes that could potentially grant them new abilities.

    Back in 2015, some of the same researchers discovered that octopuses edit their RNA more often than other species. Now, they’ve gone a step further by searching through a whole octopus genome to find where and when these edits happen and how this could affect their evolutionary history. They published their findings Thursday in Cell.

    Many of the RNA edits occur in cephalopod brains, say the researchers, such as one adaptation that allows their neurons to function in cold environments. Octopuses are infamously smart creatures, able to open jar lids and even escape their aquariums, and the researchers say that the ability to make changes to their RNA could play a role in their intelligence. Though no definitive evidence exists, the researchers say that the effects of such RNA editing are likely “profound and complex.”

    Further shoring up their claim is the discovery that nautiluses, which don’t share octopuses’ smarts, don’t rely as heavily on RNA editing. If the researchers theory is correct, being able to alter RNA could be an important factor in the species’ IQ. They still don’t, however, know what causes some bits of RNA to change after transcription while others stay the same. It’s likely not anything conscious on the part of the cephalopods, and could simply be the hand of natural selection favoring beneficial alterations to RNA.

    Evolutionary Trade-off

    What cephalopods have done, essentially, is to trade long-term, DNA-driven evolution for more immediate and individual adaptability. The researchers found that their DNA showed much lower rates of mutation than in most creatures, something they say is necessary for this type of RNA editing.

    The parts of their genome that code for RNA editing are large, making up anywhere from 23 to 41 percent of protein coding sequences, depending on the species. If any of these areas get altered, they won’t be able to change their RNA anymore. So, they’ve favored immutability in this part of the genome, vastly slowing down their rate of evolution. The upside, however, is that individual cephalopod bodies can undergo relatively sweeping changes.

    The new insights into cephalopod evolution have also pushed back the timeline for cephalopods. Most estimates of when a species first appeared are based on “molecular clock” analyses, which take a known rate of genetic mutation and extrapolate backwards to find when they would have first appeared. If squids and octopuses were experiencing mutations at a much lower rate, it would greatly extend their plausible history.
    Catwalk and motherofdragonslover thanked this post.

Page 1 of 7 1 2 3 ... LastLast

Similar Threads

  1. INTPs: Interesting stories of when you tripped on drugs.
    By Dosekk in forum INTP Forum - The Thinkers
    Replies: 10
    Last Post: 01-27-2015, 02:22 PM
  2. [INFP] Interesting stories vs. Reality
    By sighcantthinkofaname in forum INFP Forum - The Idealists
    Replies: 8
    Last Post: 11-14-2013, 10:51 AM
  3. [ENTP] Interesting job interview stories?
    By dylanshae in forum ENTP Forum- The Visionaries
    Replies: 20
    Last Post: 09-04-2012, 05:56 PM
  4. MSNBC Weird Science Stories of 2011
    By Proteus in forum Science and Technology
    Replies: 6
    Last Post: 01-10-2012, 11:37 PM
  5. [INTP] Do you find science or technology more interesting?
    By nevermore in forum INTP Forum - The Thinkers
    Replies: 42
    Last Post: 01-10-2011, 04:52 PM


Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
All times are GMT -7. The time now is 08:33 PM.
Information provided on the site is meant to complement and not replace any advice or information from a health professional.
© 2014 PersonalityCafe

SEO by vBSEO 3.6.0